

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2017
Lab 09 – File I/O

Assignment: Lab 09 – File I/O
Due Date: During discussion, April 10th through April 13th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will put into practice the new concepts you learned about file
input so far: open(), read(), split(), strip(), and more.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Opening Files

Using files as input is a much quicker and easier way to get information from
the user, especially for large amounts of data. Rather than having the user
enter everything by hand, we can read in the data from a file.

To open a file for reading, we use the following command:

myInputFile = open("theFile.txt", "r")

This line of code does three things:

1. It opens the file theFile.txt

2. The file is opened for reading ("r") – as opposed to writing

 Writing would use a “w” instead

 If no second parameter is provided, the file is opened for reading
3. The opened file is assigned to the variable myInputFile

Part 1B: Review – Reading Information from Files

Once we have opened a file and assigned it to a variable, we can use that
variable to access the file. There are four different ways to read in a file.

1. Read the entire file in as one enormous string (including newlines)
myInputFile.read()

2. Read in a single line of the file
myInputFile.readline()

3. Read the file in as a list of strings (each line being a single string)
myInputFile.readlines()

4. Iterate over the file using a for loop, reading in a line each loop
for singleLine in myInputFile:

 # singleLine contains a line from the file

Often, if we want to extract or examine data from a file, the last option (using a
for loop to iterate over the lines of the file) is the most obvious choice.

On the next page, you can see an example where we read in from a file,
printing only those lines that are exactly 36 characters long.

CMSC 201 – Computer Science I for Majors Page 3

In this code, we read in from a file, printing only those lines that are exactly 36
characters long.

inputFile = open("road.txt") # Robert Frost's poem

for line in inputFile:

 line = line.strip() # remove the newline (and

 # any other whitespace)

 if len(line) == 36: # choose the lines to print

 print(line)

inputFile.close()

When the file “road.txt” contains the poem “The Road not Taken” by Robert
Frost, the output looks like this:

Two roads diverged in a yellow wood,

To where it bent in the undergrowth;

And having perhaps the better claim,

Though as for that the passing there

Had worn them really about the same,

In leaves no step had trodden black.

Yet knowing how way leads on to way,

Two roads diverged in a wood, and I—

Part 1C (Review) – String Manipulation

This is fine, but often we want to look at the contents of a line, and make a
decision based on that, rather than on something trivial like the line length.

For example, we may have a file that contains information about our
employees and how many hours they worked this week. Using this
information, we want to be able to determine which employees are full-time
(work 30 hours or more) and which are part-time.

If we know the format of the file we are reading in, we can take advantage of
the split() function to assign each token in a line to individual variables. (A

token is a set of characters – we don’t call it a “word” because it may be
numbers, letters, whitespace, or a combination of any of the three.)

CMSC 201 – Computer Science I for Majors Page 4

If we take a look at the totalHours.txt file,

we can see that each line is formatted the same:
employee id, employee name, and the total
hours worked that week. Since we know the
format, we can directly assign each piece to a
separate variable, and use those variables to
help decide which employees are full-time.

One important thing to remember is that all of these variables will be strings to
start off – so if we want to use them as integers or floats, we will need to first
cast them to be that type.

workerHours = open("hours.txt")

for line in workerHours:

 # directly assign each token to a variable

 id, name, hours = line.split()

 # remember to cast to another type if needed

 if (float(hours) >= 30):

 print(name, "is a full-time employee")

 else:

 print(name, "is a part-time worker")

don't forget to close the file!

workerHours.close()

That code and the totalHours.txt file will give us the following output:

Suzy is a part-time worker

Brad is a full-time employee

Jenn is a full-time employee

Thom is a part-time worker

totalHours.txt

123 Suzy 18.5

456 Brad 35.0

789 Jenn 39.5
101 Thom 28.6

CMSC 201 – Computer Science I for Majors Page 5

By default, the split() function uses all whitespace (spaces, newlines, tabs,

etc.) as the delimiter. The delimiter is the boundary between each token when
the string is being split up. However, we can give it a specific character (or
characters) to split on. Here’s an example from class:

nonsense = "nutty otters making lattes"

nonsense = nonsense.split("tt")

print(nonsense)

which will output this list of strings:

['nu', 'y o', 'ers making la', 'es']

This is a bit of a silly example — normally when we choose to split on
something that isn't whitespace, we are instead using some other sort of
separator character. Using commas, semicolons, and underscores are all
common choices, as can be seen in the example code below:

courseInfo = "CMSC_201_Fall_2016_Sec_01"

infoList = courseInfo.split("_")

print(infoList)

which will output this list of strings:

['CMSC', '201', 'Fall', '2016', 'Sec', '01']

Part 1D (Review) – String Clean-Up

When we use the split() function with no parameters, it splits on

whitespace. This means that it automatically removes any trailing whitespace
(like a newline character) from the end of the string; any leading whitespace is
also removed from the start of the string.

If we simply want to remove trailing and leading whitespace, and don’t need to
use the split() function, we can use the strip() function instead. It

removes all of the whitespace from the start and end of a single string, but
leaves all of the interior whitespace intact.

CMSC 201 – Computer Science I for Majors Page 6

The code below shows the difference between the split() and strip()

functions, and how they behave on a string. (We’ve printed out underscores
on either side so you can “see” the exterior whitespace more easily.)

ride = "\tMerry go\t round\n\n"

print("Basic: _" + ride + "_")

print("Stripped: _" + ride.strip() + "_")

print("Split:", ride.split())

This outputs:

Basic: _ Merry go round

_

Stripped: _Merry go round_

Split: ['Merry', 'go', 'round']

Notice that the strip() function left the interior tab character alone, but that it

removed the tab character from the front, and both of the newline characters
from the end. The split() function split the string into tokens by removing

the interior whitespace, but it also removed all of the leading and trailing
whitespace as well.

CMSC 201 – Computer Science I for Majors Page 7

Part 2: Exercise

In this lab, you’ll be writing a program to read in and process a file of
information. The information must be read in and printed out in a specific way.

Tasks

Starting:
 Copy the showData.txt input file from Dr. Gibson’s pub directory

 Open the file and examine the contents and the way they’re formatted
Programming:
 Open the file and read in its contents
 Determine whether the show is confirmed or unconfirmed for renewal
 Print out information in a formatted table, following the sample output

General:
 Run and test your code as needed
 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 8

Part 3A: Downloading the Input File

First, create the lab9 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well.

Next, copy a file into your lab9 folder using the cp command.

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/showData.txt .

This will copy the file showData.txt from Dr. Gibson’s public folder into

your current folder.

CMSC 201 – Computer Science I for Majors Page 9

Part 3B: Writing the Program

This program reads in data from the “showData.txt” file, which contains (in this
order, and separated only by commas):

 Name of the show

 Year of premier

 Number of seasons already aired

 “yes” or “no” indicating if show has been renewed for another season

Your program will need to read this information in, process whether the show is
“confirmed” or “unconfirmed” for a new season, and print the information out for
each show.
The information is printed out in a different order than it is read in, so make
sure to follow the sample output.

Here is some sample output of the completed program.
There is no user input, and yours should look very similar once it’s done.

bash-4.1$ python popularShows.py

Year # Ssn New Season? Show Title

2011 7 confirmed Shameless

2011 6 confirmed Game of Thrones

2010 7 confirmed The Walking Dead

2005 9 unconfirmed How I Met Your Mother

2016 1 confirmed Westworld

2008 5 unconfirmed Breaking Bad

1994 10 unconfirmed Friends

2005 12 confirmed Criminal Minds

2013 4 confirmed Orange Is the New Black

CMSC 201 – Computer Science I for Majors Page 10

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Starting:
 Copy the showData.txt input file from Dr. Gibson’s pub directory

 Open the file and examine the contents and the way they’re formatted
 Show title, year premiered, number of seasons, renewed or not

Programming:
 Open the file and read in its contents
 Determine whether the show is confirmed or unconfirmed for renewal
 Print out information in a formatted table, following sample output

General:
 Run and test your code as needed
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

